605.617.81 FA21
Introduction to GPU Programming

Project Report

Seo, Stephen

December 13th, 2021

Contents

1 Abstract: What the Project is About
1.1 Blue-Noise
1.2 How the Blue-Noiseis Used

2 Project Result
2.1 Videoto PNGs e

3 Project Presentation

4 Conclusion

1 Abstract: What the Project is About

The project can be explained here (project proposal), but the end result is a little different
than in the project proposal.

The project aims to implement dithering images via the usage of blue-noise images, and can
be applied to dither images or video with the option of doing so in color or in grayscale. The
project proposal mentioned dithering images in real time, but I ended up choosing to add
the capability to dither input video clips instead.

1.1 Blue-Noise

Blue-noise is basically uniformly distributed white-noise. Before the course had started, I
wanted to make a program that dithered images for me, and set up a private repo. Though I
never ended up making dithered images in the end, only a program that generated blue-noise
for the use of dithering, which can be found here. I felt that since I started that project before
the course started, I couldn’t use it as the course project. Though I felt it important to state
here where the blue-noise images came from. Note that the blue-noise algorithm is somewhat
explained in the link provided in the project proposal, and a reference implementation is also
available at the same place. I also must note that I finished my blue-noise project after the
course had started, which was good timing for me to generate my own blue-noise to use in
my project.

1.2 How the Blue-Noise is Used

Take for example grayscale dithering. First, an offset into blue-noise is randomly generated
(blue-noise is supposed to be tileable, so any offset should be fine, as repeatedly tiling blue-
noise should not produce repeating artifacts (if you try different zoomed views of dithered
images, you do see artifacts, so it’s possible that my blue-noise generator has a flaw, or that’s
just how blue-noise is)).

The entirety of the image is then “compared” with the blue-noise by applying the blue-noise
onto the image with tiling. The algorithm that determines whether or not a grayscale image’s
pixel is black or white is the following:

uint8_t pixel = input_image[image_idx] > blue_noise[blue_noise_idx] ? 255 : 0;

Listing 1: Algorithm that decides if a grayscale pixel is black or white

Since blue-noise ranges from 0 to 255 uniformly, the result is that images will have a
“smoother” dithered appearance than applying just plain old random white-noise.

https://seodisparate.com/static/uploads/EN605.617.81.FA21_ProjectProposal.pdf
https://git.seodisparate.com/stephenseo/blue_noise_generation
https://surma.dev/things/ditherpunk/
https://github.com/MomentsInGraphics/BlueNoise/
https://github.com/MomentsInGraphics/BlueNoise/

2 Project Result

Project Source Repository

Figure 1: Original compared with blue-noise dithering of my pet dog Louie

https://github.com/Stephen-Seo/EN605.617.81.FA21_StephenSeo_DitheringProject

I was able to implement dithering for images and video in grayscale or color. The caveat
for color is that 8 possible colors are used: Black, White, Red, Green, Blue, Yellow, Cyan,
and Magenta. Grayscale uses: Black and White. Image output to PNG is optimized to
use a palette for color, and grayscale mode for grayscale (this is possible through the use
of libpng, though it wasn’t easy to figure out as libpng provides a guide pdf but not an
API documentation page). When outputting to video, I merely set the quality settings high
enough to preserve quality for Colored Dithered output. The result is that the video size
may use a significant amount of disk-space. I'm not sure how to use a palette for H264
encoding, and I'm not even sure if that’s possible, but for now I’ve just set it up such that
video encodes with “good-enough” quality.

2.1 Video to PNGs

Note that the project also provides the ability to take video input and output each output
frame as individual PNG files (which can be muxed together as described here with
whatever settings one wants). Some reasons why I added this implementation is that I've
had problems with different video sources outputing dithered video with the wrong FPS
(frames-per-second), or bad quality (worse than generating each PNG and muxing them
together).

3 Project Presentation

The project presentation can be viewed here.

4 Conclusion

The creation of a program that can dither images and video using OpenCL was mostly a
success (different zoomed views of the dithered images may show tiling artifacts sometimes,
and I haven’t been able to fix this, but it isn’t noticable if the image is viewed at its original
dimensions), though I must say that working on my blue-noise generator on the side was
helpful in figuring out OpenCL too. I leave both of these programs open-source in the hopes
that they may be useful, as I personally think dithered images is a cool aesthetic to use.

https://trac.ffmpeg.org/wiki/Slideshow
https://trac.ffmpeg.org/wiki/Slideshow
https://igpup.seodisparate.com/posts/project_presentation

	Abstract: What the Project is About
	Blue-Noise
	How the Blue-Noise is Used

	Project Result
	Video to PNGs

	Project Presentation
	Conclusion

